Review on the production of effective plant biopolymers in reducing microbial infections
Researcher Bulletin of Medical Sciences,
Vol. 27 No. 1 (2022),
20 November 2022
,
Page e12
Abstract
One of the most important problems from the past to the present is deadly opportunistic disease in developing countries, which leads to increase mortality in the world. Microbial pathogens such as fungi, bacteria, parasites, and viruses can cause these deadly opportunistic infections. Herbal medicines in the form of nanoparticles, nanocapsules, and biocompatible polymers, and liposomes can be effective in reducing mortality from these infections. Also due to the excessive use of antibiotics, microbial resistance is expanding day to day. On the other hand, indigenous, cheapness, availability, and rich source of effective herbal substances have made these compounds have many applications in biomedical fields. The aqueous extract, essential oil, and active ingredients of various parts of plants such as bark, stems, leaves, fruits, and seeds are used in the treatment of infectious diseases. This article provides information about medicinal plants that have antibacterial properties and are used to treat microbial infections. It is hoped that using this method can reduce and treat microbial infections to some extent.
- Medicine plants; Microbial infections; Biopolymers; Nanocapsules; Nanoparticles
How to Cite
References
Antimicrobial Drug Targets American society for microbiology. 2018;3(3):18-24.
2. Brooks LE, Ul-Hasan S, Chan BK, Sistrom MJ. Quantifying the evolutionary conservation of genes encoding multidrug efflux pumps in the ESKAPE pathogens to identify antimicrobial drug targets. Msystems. 2018;3(3).
3. Larypoor M, farsad, Evaluation of the incidence of nosocomial infections in one of the hospitals of Qom province, Journal of Iran medical microbiology,2011,5(3), 7-17
4. Kramer A, Schwebke I, Kampf G. How long do nosocomial pathogens persist on inanimate surfaces? A systematic review. BMC infectious diseases. 2006;6(1):1-8.
5. Jahantigh M, Tahmasbi H, Bakaeiyan M. Antibiotic Resistance Pattern of Pseudomonas aeruginosa Strains Isolated from Burn Patients. medical journal of mashhad university of medical sciences. 2019;62(5):1121-31.
6. Zahedani S, Jahantigh M, Amini Y. Determining a pattern for antibiotic resistance in clinical isolations of pseudomonas aeruginosa. Tehran University Medical Journal. 2018;76(8):517-22.
7. Coast J, Smith RD, Millar MR. Superbugs: should antimicrobial resistance be included as a cost in economic evaluation? Health economics. 1996;5(3):217-26.
8. Samoilova Z, Smirnova G, Muzyka N, Oktyabrsky O. Medicinal plant extracts variously modulate susceptibility of Escherichia coli to different antibiotics. Microbiological research. 2014;169(4):307-13.
9. Wu G, Wu H, Fan X, Zhao R, Li X, Wang S, et al. Selective toxicity of antimicrobial peptide S-thanatin on bacteria. Peptides. 2010 9//;31(9):1669-73.
10. Dandela R MD, Cravatt B,Rayo J,Meijler M. Proteome-wide mapping of PQS-interacting proteins in Pseudomonas aeruginosa. The Royal Society of Chemistry. 2018;9:2290-4.
11. Khan SU, Anjum SI, Ansari MJ, Khan MHU, Kamal S, Rahman K, et al. Antimicrobial potentials of medicinal plant’s extract and their derived silver nanoparticles: A focus on honey bee pathogen. Saudi journal of biological sciences. 2019;26(7):1815-34.
12. Malesh B, Satish S. Antimicrobial Activity of some important medicinal plant against plant and human pathogen. World Journal of Agriculture Sciences. 2008;4(5):839-43.
13. Qin S, Li J, Chen H-H, Zhao G-Z, Zhu W-Y, Jiang C-L, et al. Isolation, diversity, and antimicrobial activity of rare actinobacteria from medicinal plants of tropical rain forests in Xishuangbanna, China. Applied and environmental microbiology. 2009;75(19):6176-86.
14. Sakthi S, Saranraj P, Geetha M. Antibacterial evaluation and phytochemical screening of Datura metel leaf extracts against bacterial pathogens. International Journal Pharm Biol Arch. 2011;2(4):1130-6.
15. Abat JK, Kumar S, Mohanty A. Ethnomedicinal, phytochemical and ethnopharmacological aspects of four medicinal plants of Malvaceae used in Indian traditional medicines: a review. Medicines. 2017;4(4):75.
16. Nandagopal B, Sankar S, Ramamurthy M, Sathish S, Sridharan G. Could the products of Indian medicinal plants be the next alternative for the treatment of infections? Indian journal of medical microbiology. 2011 Apr-Jun;29(2):93-101. PubMed PMID: 21654101. Epub 2011/06/10. eng.
17. Kirtikar KR, Basu BD. Indian Medicinal Plants. Indian Medicinal Plants. 1918.
18. Karou D, Nadembega WM, Ouattara L, Ilboudo DP, Canini A, Nikiéma JB, et al. African ethnopharmacology and new drug discovery. Medicinal and Aromatic Plant Science and Biotechnology. 2007;1(1):61-9.
19. Rahman SMA, Abd-Ellatif SA, Deraz SF, Khalil AA. Antibacterial activity of some wild medicinal plants collected from western Mediterranean coast, Egypt: Natural alternatives for infectious disease treatment. African Journal of Biotechnology. 2011;10(52):10733-43.
20. Shaheen G, Akram M, Jabeen F, Ali Shah SM, Munir N, Daniyal M, et al. Therapeutic potential of medicinal plants for the management of urinary tract infection: A systematic review. Clinical and experimental pharmacology & physiology. 2019 Jul;46(7):613-24. PubMed PMID: 30932202. Epub 2019/04/02. eng.
21. Shahzad F, Anderson D, Najafzadeh M. The Antiviral, Anti-Inflammatory Effects of Natural Medicinal Herbs and Mushrooms and SARS-CoV-2 Infection. Nutrients. 2020 Aug 25;12(9). PubMed PMID: 32854262. Pubmed Central PMCID: PMC7551890. Epub 2020/08/29. eng.
22. Quave CL, Plano LR, Pantuso T, Bennett BC. Effects of extracts from Italian medicinal plants on planktonic growth, biofilm formation and adherence of methicillin-resistant Staphylococcus aureus. Journal of ethnopharmacology. 2008;118(3):418-28.
23. Grierson D, Afolayan A. Antibacterial activity of some indigenous plants used for the treatment of wounds in the Eastern Cape, South Africa. Journal of Ethnopharmacology. 1999;66(1):103-6.
24. Walter C, Shinwari ZK, Afzal I, Malik RN. Antibacterial activity in herbal products used in Pakistan. Pak J Bot. 2011;43:155-62.
25. Shinwari ZK. Medicinal plants research in Pakistan. Journal of medicinal plants research. 2010;4(3):161-76.
26. Ahluwalia V, Elumalai S, Kumar V, Kumar S, Sangwan RS. Nano silver particle synthesis using Swertia paniculata herbal extract and its antimicrobial activity. Microbial pathogenesis. 2018;114:402-8.
27. Rai M, Ingle A. Role of nanotechnology in agriculture with special reference to management of insect pests. Applied microbiology and biotechnology. 2012;94(2):287-93.
28. Ling S, Chen W, Fan Y, Zheng K, Jin K, Yu H, et al. Biopolymer nanofibrils: Structure, modeling, preparation, and applications. Progress in polymer science. 2018;85:1-56.
29. Shanmuganathan R, Edison T, LewisOscar F, Kumar P, Shanmugam S, Pugazhendhi A. Chitosan nanopolymers: An overview of drug delivery against cancer. International journal of biological macromolecules. 2019 Jun 1;130:727-36. PubMed PMID: 30771392. Epub 2019/02/17. eng.
30. Syafiq R, Sapuan S, Zuhri M, Ilyas R, Nazrin A, Sherwani S, et al. Antimicrobial activities of starch-based biopolymers and biocomposites incorporated with plant essential oils: A review. Polymers. 2020;12(10):2403.
31. Slager J, Domb AJ. Biopolymer stereocomplexes. Advanced drug delivery reviews. 2003;55(4):549-83.
32. Zahedani SS, Tahmasebi H, Jahantigh M. Coexistence of Virulence Factors and Efflux Pump Genes in Clinical Isolates of Pseudomonas aeruginosa: Analysis of Biofilm-Forming Strains from Iran. International Journal of Microbiology. 2021 2021/05/21;2021:5557361.
33. Zuo G-Y, Zhang X-J, Yang C-X, Han J, Wang G-C, Bian Z-Q. Evaluation of traditional Chinese medicinal plants for anti-MRSA activity with reference to the treatment record of infectious diseases. Molecules. 2012;17(3):2955-67.
34. Tohidpour A, Sattari M, Omidbaigi R, Yadegar A, Nazemi J. Antibacterial effect of essential oils from two medicinal plants against Methicillin-resistant Staphylococcus aureus (MRSA). Phytomedicine. 2010;17(2):142-5.
35. Okwu MU, Olley M, Akpoka AO, Izevbuwa OE. Methicillin-resistant Staphylococcus aureus (MRSA) and anti-MRSA activities of extracts of some medicinal plants: A brief review. AIMS microbiology. 2019;5(2):117.
36. Girish H, Satish S. Antibacterial activity of important medicinal plants on human pathogenic bacteria-a comparative analysis. World Applied Sciences Journal. 2008;5(3):267-71.
37. NAIR R, KALARIYA T, Chanda S. Antibacterial activity of some selected Indian medicinal flora. Turkish Journal of biology. 2005;29(1):41-7.
38. Hu K, Guan W-j, Bi Y, Zhang W, Li L, Zhang B, et al. Efficacy and safety of Lianhuaqingwen capsules, a repurposed Chinese herb, in patients with coronavirus disease 2019: A multicenter, prospective, randomized controlled trial. Phytomedicine. 2021;85:153242.
39. Shahrajabian MH, Sun W, Cheng Q. Survey on Chemical Constituent, Traditional and Modern Pharmaceutical and Health Benefits of Chinese Star Anise, a Treasure from the East. Pharmacognosy Communications. 2021;11(1).
40. Gamaleldin MM, NASHAT SM. COVID-19 treatment modalities. 2020.
41. Yang Y, Islam MS, Wang J, Li Y, Chen X. Traditional Chinese medicine in the treatment of patients infected with 2019-new coronavirus (SARS-CoV-2): a review and perspective. International journal of biological sciences. 2020;16(10):1708.
42. Huo X, Dai Y, Yang T, Zhang Y, Li M, Xu X. Decreased erythrocyte CD44 and CD58 expression link e-waste Pb toxicity to changes in erythrocyte immunity in preschool children. Science of the Total Environment. 2019;664:690-7.
43. Gangal N, Nagle V, Pawar Y, Dasgupta S. Reconsidering Traditional Medicinal Plants to Combat COVID-19. AIJR Preprints. 2020;34:1-6.
44. Almeida-Souza F, Taniwaki NN, Amaral ACF, Souza CdSFd, Calabrese KdS, Abreu-Silva AL. Ultrastructural changes and death of Leishmania infantum promastigotes induced by Morinda citrifolia Linn. fruit (Noni) juice treatment. Evidence-Based Complementary and Alternative Medicine. 2016;2016.
45. Dussossoy E, Bichon F, Bony E, Portet K, Brat P, Vaillant F, et al. Pulmonary anti-inflammatory effects and spasmolytic properties of Costa Rican noni juice (Morinda citrifolia L.). Journal of ethnopharmacology. 2016;192:264-72.
46. Batiha GE-S, Alqahtani A, Ojo OA, Shaheen HM, Wasef L, Elzeiny M, et al. Biological properties, bioactive constituents, and pharmacokinetics of some Capsicum spp. and capsaicinoids. International journal of molecular sciences. 2020;21(15):5179.
47. Mao Q-Q, Xu X-Y, Cao S-Y, Gan R-Y, Corke H, Li H-B. Bioactive compounds and bioactivities of ginger (Zingiber officinale Roscoe). Foods. 2019;8(6):185.
48. Wang J, Prinz RA, Liu X, Xu X. In Vitro and In Vivo Antiviral Activity of Gingerenone A on Influenza A Virus Is Mediated by Targeting Janus Kinase 2. Viruses. 2020;12(10):1141.
49. Rafiee R, Eftekhar F, Tabatabaei SA, Tehrani DM. Prevalence of extended-spectrum and metallo β-lactamase production in AmpC β-lactamase producing Pseudomonas aeruginosa isolates from burns. Jundishapur journal of microbiology. 2014;7(9).
50. El-Baroty GS, Abd El-Baky H, Farag RS, Saleh MA. Characterization of antioxidant and antimicrobial compounds of cinnamon and ginger essential oils. African journal of biochemistry research. 2010;4(6):167-74.
51. Malmir S, Karbalaei A, Pourmadadi M, Hamedi J, Yazdian F, Navaee M. Antibacterial properties of a bacterial cellulose CQD-TiO2 nanocomposite. Carbohydrate polymers. 2020;234:115835.
52. Giftania W, Mahmiah, Sri Agus S. In vitro Antibacterial Activity of Chitosan Nanoparticles against Mycobacterium tuberculosis. Pharmacognosy Journal. 2018;10(1).
53. Hussain I, Singh NB, Singh A, Singh H, Singh SC. Green synthesis of nanoparticles and its potential application. Biotechnology Letters. 2016 2016/04/01;38(4):545-60.
54. Sinha-Ray S, Sahu R, Yarin A. Nano-encapsulated smart tunable phase change materials. Soft Matter. 2011;7(19):8823-7.
55. Bozzuto G, Molinari A. Liposomes as nanomedical devices. International journal of nanomedicine. 2015;10:975.
56. Vazquez-Guillamet MC, Vazquez R, Micek ST, Kollef MH. Predicting resistance to piperacillin-tazobactam, cefepime and meropenem in septic patients with bloodstream infection due to Gram-negative bacteria. Clinical Infectious Diseases. 2017;65(10):1607-14.
57. Tanvir F, Yaqub A, Tanvir S, Anderson WA. Poly-L-arginine coated silver nanoprisms and their anti-bacterial properties. Nanomaterials. 2017;7(10):296.
58. Sre PR, Reka M, Poovazhagi R, Kumar MA, Murugesan K. Antibacterial and cytotoxic effect of biologically synthesized silver nanoparticles using aqueous root extract of Erythrina indica lam. Spectrochimica Acta Part A: Molecular and Biomolecular Spectroscopy. 2015;135:1137-44.
59. Villeret B, Dieu A, Straube M, Solhonne B, Miklavc P, Hamadi S, et al. Silver nanoparticles impair retinoic acid-inducible gene I-mediated mitochondrial antiviral immunity by blocking the autophagic flux in lung epithelial cells. ACS nano. 2018;12(2):1188-202.
60. Fayaz AM, Ao Z, Girilal M, Chen L, Xiao X, Kalaichelvan P, et al. Inactivation of microbial infectiousness by silver nanoparticles-coated condom: a new approach to inhibit HIV-and HSV-transmitted infection. International journal of nanomedicine. 2012;7:5007.
61. Murugan K, Senthilkumar B, Senbagam D, Al-Sohaibani S. Biosynthesis of silver nanoparticles using Acacia leucophloea extract and their antibacterial activity. International Journal of Nanomedicine. 2014;9:2431.
62. Nithya Deva Krupa A, Raghavan V. Biosynthesis of silver nanoparticles using Aegle marmelos (Bael) fruit extract and its application to prevent adhesion of bacteria: a strategy to control microfouling. Bioinorganic chemistry and applications. 2014;2014.
63. Joseph S, Mathew B. Microwave assisted biosynthesis of silver nanoparticles using the rhizome extract of Alpinia galanga and evaluation of their catalytic and antimicrobial activities. Journal of Nanoparticles. 2014;2014.
64. Gurunathan S, Han JW, Kwon D-N, Kim J-H. Enhanced antibacterial and anti-biofilm activities of silver nanoparticles against Gram-negative and Gram-positive bacteria. Nanoscale research letters. 2014;9(1):1-17.
65. Raghunandan D, Mahesh BD, Basavaraja S, Balaji S, Manjunath S, Venkataraman A. Microwave-assisted rapid extracellular synthesis of stable bio-functionalized silver nanoparticles from guava (Psidium guajava) leaf extract. Journal of Nanoparticle Research. 2011;13(5):2021-8.
66. Gogoi N, Babu PJ, Mahanta C, Bora U. Green synthesis and characterization of silver nanoparticles using alcoholic flower extract of Nyctanthes arbortristis and in vitro investigation of their antibacterial and cytotoxic activities. Materials Science and Engineering: C. 2015;46:463-9.
67. Vilas V, Philip D, Mathew J. Catalytically and biologically active silver nanoparticles synthesized using essential oil. Spectrochimica Acta Part A: Molecular and Biomolecular Spectroscopy. 2014;132:743-50.
68. Mubayi A, Chatterji S, Rai PM, Watal G. Evidence based green synthesis of nanoparticles. Adv Mat Lett. 2012;3(6):519-25.
69. Ajitha B, Reddy YAK, Reddy PS. Green synthesis and characterization of silver nanoparticles using Lantana camara leaf extract. Materials science and engineering: C. 2015;49:373-81.
70. Praba PS, Vasantha V, Jeyasundari J, Jacob YBA. Synthesis of plant-mediated silver nanoparticles using ficus microcarpa leaf extract and evaluation of their antibacterial activities. European Chemical Bulletin. 2015;4(1-3):117-20.
71. Patil SV, Borase HP, Patil CD, Salunke BK. Biosynthesis of silver nanoparticles using latex from few euphorbian plants and their antimicrobial potential. Applied biochemistry and biotechnology. 2012;167(4):776-90.
72. Muniyappan N, Nagarajan N. Green synthesis of silver nanoparticles with Dalbergia spinosa leaves and their applications in biological and catalytic activities. Process biochemistry. 2014;49(6):1054-61.
73. Vankar PS, Shukla D. Biosynthesis of silver nanoparticles using lemon leaves extract and its application for antimicrobial finish on fabric. Applied Nanoscience. 2012;2(2):163-8.
74. Abdel-Aziz MS, Shaheen MS, El-Nekeety AA, Abdel-Wahhab MA. Antioxidant and antibacterial activity of silver nanoparticles biosynthesized using Chenopodium murale leaf extract. Journal of Saudi Chemical Society. 2014;18(4):356-63.
75. Jeeva K, Thiyagarajan M, Elangovan V, Geetha N, Venkatachalam P. Caesalpinia coriaria leaf extracts mediated biosynthesis of metallic silver nanoparticles and their antibacterial activity against clinically isolated pathogens. Industrial Crops and Products. 2014;52:714-20.
76. Panneerselvam C, Ponarulselvam S, Murugan K. Potential anti-plasmodial activity of synthesized silver nanoparticle using Andrographis paniculata Nees (Acanthaceae). Arch Appl Sci Res. 2011;3(6):208-17.
77. Ponarulselvam S, Panneerselvam C, Murugan K, Aarthi N, Kalimuthu K, Thangamani S. Synthesis of silver nanoparticles using leaves of Catharanthus roseus Linn. G. Don and their antiplasmodial activities. Asian Pacific journal of tropical biomedicine. 2012;2(7):574-80.
78. Soltani Maryam LM, Akhavan sepahi Abas,Pirali hamedani Morteza. The effect of garlic allicin on macrophage nitric oxide production against Candida albicans. Journal of clinical plants. 2009;7(29):164-200.
79. Ghasemi PA, Jahanbazi P, Enteshari S, Malekpoor F, Hamedi B. Antimicrobial activity of some Iranian medicinal plants. Archives of Biological Sciences. 2010;62(3):633-41.
80. Haddad MHF, Mahbodfar H, Zamani Z, Ramazani A. Antimalarial evaluation of selected medicinal plant extracts used in Iranian traditional medicine. Iranian Journal of Basic Medical Sciences. 2017;20(4):415.
81. Dorman H, Peltoketo A, Hiltunen R, Tikkanen M. Characterisation of the antioxidant properties of de-odourised aqueous extracts from selected Lamiaceae herbs. Food chemistry. 2003;83(2):255-62.
82. Sundaram E, Reddy P, Singh K. Effect of alcoholic extracts of Indian medicinal plants on the altered enzymatic activities of diabetic rats. Indian Journal of Pharmaceutical Sciences. 2009 Sep 2009;71(5):594-8. PubMed PMID: 869944893. English.
83. Jafari B, Ebadi A, Aghdam BM, Hassanzade Z. Antibacterial activities of lemon grass methanol extract and essence on pathogenic bacteria. American-Eurasian J Agric and Environ Sci. 2012;2:1042-6.
84. Menon VP, Sudheer AR. Antioxidant and anti-inflammatory properties of curcumin. The molecular targets and therapeutic uses of curcumin in health and disease. 2007:105-25.
85. Maheshwari RK, Singh AK, Gaddipati J, Srimal RC. Multiple biological activities of curcumin: a short review. Life sciences. 2006;78(18):2081-7.
86. Khan IA, Abourashed EA. Leung's encyclopedia of common natural ingredients: used in food, drugs and cosmetics: John Wiley & Sons; 2011.
87. Malik M, Sattar A, Khan S. Essential oils of the species of Labiatae Part III. Studies on the essential oil of Zataria multiflora. Pakistan Journal of Scientific and Industrial Research (Pakistan). 1987.
88. Evans JD, Martin SA. Effects of thymol on ruminal microorganisms. Current microbiology. 2000;41(5):336-40.
- Abstract Viewed: 190 times